Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

نویسندگان

  • Prabhakar Singh
  • Rajesh Kumar Kesharwani
  • Krishna Misra
  • Syed Ibrahim Rizvi
چکیده

Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b 5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation Effects of Curcumin on Erythrocyte Ion-Transporter Activity

Curcumin ((1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the yellow biphenolic pigment isolated from turmeric (Curcuma longa), has various medicinal benefits through antioxidation, anti-inflammation, cardiovascular protection, immunomodulation, enhancing of the apoptotic process, and antiangiogenic property. We explored the effects of curcumin in vitro (10(-5) M to 10(-8)...

متن کامل

Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker?

Erythrocytes are involved in the transport of oxygen and carbon dioxide in the body. Since pH is the influential factor in the Bohr-Haldane effect, pHi is actively maintained via secondary active transports Na(+)/H(+) exchange and HC(3) (-)/Cl(-) anion exchanger. Because of the redox properties of the iron, hemoglobin generates reactive oxygen species and thus, the human erythrocyte is constant...

متن کامل

The ascorbate-driven reduction of extracellular ascorbate free radical by the erythrocyte is an electrogenic process.

Erythrocytes can reduce extracellular ascorbate free radicals by a plasma membrane redox system using intracellular ascorbate as an electron donor. In order to test whether the redox system has electrogenic properties, we studied the effect of ascorbate free radical reduction on the membrane potential of the cells using the fluorescent dye 3,3'-dipropylthiadicarbocyanine iodide. It was found th...

متن کامل

Activation of the erythrocyte plasma membrane redox system by resveratrol: a possible mechanism for antioxidant properties.

Resveratrol is one of the most widely studied of all the plant-produced polyphenols and has diverse, beneficial health effects including anti-cancer and cardio-protective effects. Many of the biological actions of this polyphenol have been attributed to its antioxidant properties. Erythrocytes contain a plasma membrane redox system (PMRS), which transfers electrons from intracellular donors (NA...

متن کامل

The modulation of erythrocyte Na+/K+-ATPase activity by curcumin

Curcumin, an active biphenolic molecule present in turmeric (Curcuma longa), has been reported to elicit plethora of health protective effects. The present study was carried out in vitro, in vivo and in silico to investigate the modulatory effects of curcumin on erythrocyte membrane Na(+)/K(+)-ATPase activity. In vitro curcumin (10(-) (5) M to 10(-) (8) M) was incubated with human erythrocytes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016